
Characterizing & Optimizing Virtualization Overhead
for Portable High-Performance Networking
Gabriel E. Martinez (mystal@vt.edu), Mark K. Gardner (mkg@vt.edu), and Wu-chun Feng (feng@cs.vt.edu)

Motivation

Future Work Insight & Conclusions

Hypothesis

Approach

  Why Platform Virtualization?

  Server consolidation

  OS version mismatch in HPC

  Completely sandboxed testing

  Noise isolation for improved performance

  Why NOT Platform Virtualization?

  Significant performance impact …

relative to the network and I/O.

Network performance suffers due to high CPU utilization
within virtual machines (VMs).

Experimental Set-Up

  Use iperf & ANL Microbenchmark

Suite to measure network performance

  Run multiple CPU-bound processes to

reduce cycles available to iperf	

  Test in Ubuntu 8.04 on quad-core AMD

Opterons that do not have hardware
virtualization support

  Further explore the impact of optimizing VMs via paravirtualization.

  Started with Xen, now look into VMware ESX and Sun xVM.

  Continue to benchmark virtualized hardware to better understand

virtualization implementations, e.g.,

  Preliminary testing with virtualized Intel Gigabit NIC:

• VirtualBox: 50%+ increase in bandwidth over the default driver
• VMware: 30%+ decrease in bandwidth over the default driver

  Understand and characterize why Xen performance decays linearly as #
of VMs exceeds # of cores.

  Conduct detailed analysis of why multiple processors help Xen but not
VMware Server with respect to bandwidth (BW)

  VMware: Single CPU BW: 721 Mb/s  Dual CPU BW: 323 Mb/s

  Extend the study to understand the impact of hardware virtualization.

   Incorporate findings into the broader project of providing virtual machines

for pedagogy and related projects in bioinformatics & green computing.

Hardware

Host OS

Virtual
Machine
Monitor

Guest OS iperf Server

OS

Hardware

iperf Client

VirtualBox
Enhanced Version of QEMU

Xen VMware Server

  Guest OSes run in ring-1

  Faults into ring-0 which kernel module handles

  Dynamic re-compilation limits number of faults

  Emulation takes place in rare cases

  Max: 421 Mb/s over 1-Gb/s Ethernet connection

  Guest OS user code runs natively
 … but guest OS kernel code cannot

  Converts privileged kernel code to unprivileged
utilizing binary translation

  Max: 721 Mb/s over 1-Gb/s Ethernet connection

Windows Vista and Solaris
running inside Solaris

  A hypervisor that runs on bare hardware

  Utilizes paravirtualization for guest OSes

  Effectively removes second network stack

  Requires guests to be VM-aware

  Max: 943 Mb/s on 1-Gb/s Ethernet connection

 Inside a VM, iperf throughput drops off with
increased number of CPU-bound processes

 Like VirtualBox, iperf throughput depends on
the # of CPU-bound processes running in the VM

 iperf performance is high and only drops with
5 or more processes. Why? Xen effectively uses
each available AMD core for VMs

Characterize network performance on VirtualBox, VMware
Server, and Xen relative to raw performance on host OS.

  Performance and # of other CPU-bound processes inversely related
for VirtualBox and VMware Server (see graphs above)

  Inside of a VM a normally I/O-bound program

... iperf is instead CPU-bound

  The above relationship explains
the significant differences in
network performance

 ACM Best
Undergraduate
Student Poster

Award

http://synergy.cs.vt.edu/

VMs for Pedagogy
http://service.cs.vt.edu/

